Atlantic to Urals - the Holocene climatic record of Mid-Latitude Europe

The mid-latitude belt of Europe, broadly between 45º and 65º N, is probably the most intensively studied area of the PEPIII transect, but providing a synthesis of Holocene climatic change over this large and varied area is not easy. Ocean and ice core records provide a background scale of change to...

Full description

Bibliographic Details
Main Authors: Barber, K.E., Zolitschka, B., Lauritzen, S-E., Tarasov, P., Lotter, A.
Format: Conference Object
Language:unknown
Published: ECRC/CEREGE 2001
Subjects:
Online Access:https://eprints.soton.ac.uk/15859/
http://atlas-conferences.com/cgi-bin/abstract/cahi-81
Description
Summary:The mid-latitude belt of Europe, broadly between 45º and 65º N, is probably the most intensively studied area of the PEPIII transect, but providing a synthesis of Holocene climatic change over this large and varied area is not easy. Ocean and ice core records provide a background scale of change to what was happening on the continent, but the tremendous events of the last glacial in these records have tended to obscure the importance of Holocene fluctuations. Temperature variations in the order of 1-2°C may appear as minor variations in an ice core record but such changes had effects on glaciers, lakes, treelines and bogs, and on people. The direct effects on humanity are moderated by the adaptability of societies, but there must have been some impact, especially on farming. In this paper we outline firstly the nature of the records, including such issues as their spatial and temporal resolution and the clarity of the climatic signal. We attempt to answer the key questions posed in this part of the PEPIII Science Plan by highlighting the evidence from key sites with high quality proxy records, rather than attempting to synthesize a Europe-wide picture, which would be premature, and needs further refinement of site chronologies. The stratigraphy of European peat bogs was one of the first proxy climate records, and was used in sub-dividing the Holocene. Recent development of more quantified analyses has revived the usefulness of the peat archive, and it seems that periods of wetter bog surfaces are most probably a reflection of secular summer temperature declines, and therefore evapotranspiration, rather than the irregular and rapid changes that characterise the precipitation record. Significant wet shifts occur in western European bogs at around 8200 - 7800, 4400 - 4000, 2800 - 2200, 1400 - 1300, and 1100 - 1000 cal. BP. Where the upper peat still exists the two phases of the Little Ice Age are often very marked, between AD 1300 - 1500 and especially AD 1650 - 1800. Periodicities of c. 1100, 600 and 200 years ...