Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling

International audience The behavior of the terrestrial glacial regime during the Neoproterozoic glaciations is still a matter of debate. Some papers claim that the glacial sequences cannot be explained with the snowball Earth scenario. Indeed, the near shutdown of the hydrological cycle simulated by...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Donnadieu, Yannick, Fluteau, Frédéric, Ramstein, Gilles, Ritz, Catherine, Besse, Jean
Other Authors: Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Institut National de la Recherche Agronomique (INRA)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire des Sciences du Climat et de l'Environnement Gif-sur-Yvette (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Modélisation du climat (CLIM), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), EDGe, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2003
Subjects:
Online Access:https://hal.science/hal-02902683
https://doi.org/10.1016/S0012-821X(02)01152-4
Description
Summary:International audience The behavior of the terrestrial glacial regime during the Neoproterozoic glaciations is still a matter of debate. Some papers claim that the glacial sequences cannot be explained with the snowball Earth scenario. Indeed, the near shutdown of the hydrological cycle simulated by climatic models, once the Earth is entirely glaciated, has been put in contrast with the need for active, wet-based continental ice sheets to produce the observed thick glacial deposits. A climate ice-sheet model is applied to the older extreme Neoproterozoic glaciation (around 750 Ma) with a realistic paleogeographic reconstruction of Rodinia. Our climate model shows that a small quantity of precipitation remains once the ocean is completely ice-covered, thanks to sublimation processes over the sea-ice at low latitudes acting as a water vapor source. After 10 ka of the ice-sheet model, the ice volume in the tropics is small and confined as separate ice caps on coastal areas where water vapor condenses. However, after 180 ka, large ice sheets can extend over most of the supercontinent Rodinia. Several areas of basal melting appear while ice sheets reach their ice-volume equilibrium state, at 400 ka, they are located either under the two single-domed ice sheets covering the Antarctica and the Laurentia cratons, or near the ice-sheet margins where fast flow occurs. Only the isolated and high-latitude cratons stay cold-based. Finally, among the simulated ice sheets, most have a dynamic behavior, in good agreement with the needs inferred by the preserved thick formations of diamictite, and share the features of the Antarctica present-day ice sheet. Therefore, our conclusion is that a global glaciation would not have hindered the formation of the typical glacial structures seen everywhere in the rock record of Neoproterozoic times.