Ubiquitous low-level liquid-containing Arctic clouds: New observations and climate model constraints from CALIPSO-GOCCP

International audience Ground-based observations show that persistent liquid-containing Arctic clouds occur frequently and have a dominant influence on Arctic surface radiative fluxes. Yet, without a hemispheric multi-year perspective, the climate relevance of these intriguing Arctic cloud observati...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Cesana, G., Kay, J.E., Chepfer, H., English, J.M., de Boer, G.
Other Authors: Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL), Climate and Global Dynamics Division Boulder (CGD), National Center for Atmospheric Research Boulder (NCAR), Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder -National Oceanic and Atmospheric Administration (NOAA), NOAA Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA), Lawrence Berkeley National Laboratory Berkeley (LBNL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2012
Subjects:
Online Access:https://hal.science/hal-01116274
https://hal.science/hal-01116274/document
https://hal.science/hal-01116274/file/2012GL053385.pdf
https://doi.org/10.1029/2012GL053385
Description
Summary:International audience Ground-based observations show that persistent liquid-containing Arctic clouds occur frequently and have a dominant influence on Arctic surface radiative fluxes. Yet, without a hemispheric multi-year perspective, the climate relevance of these intriguing Arctic cloud observations was previously unknown. In this study, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations are used to document cloud phase over the Arctic basin (60-82N) during a five-year period (2006-2011). Over Arctic ocean-covered areas, low-level liquid-containing clouds are prevalent in all seasons, especially in Fall. These new CALIPSO observations provide a unique and climate-relevant constraint on Arctic cloud processes. Evaluation of one climate model using a lidar simulator suggests a lack of liquid-containing Arctic clouds contributes to a lack of "radiatively opaque" states. The surface radiation biases found in this one model are found in multiple models, highlighting the need for improved modeling of Arctic cloud phase. © 2012. American Geophysical Union. All Rights Reserved.