Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: A satellite view.
International audience Phytoplankton plays an important role in the global carbon cycle via the fixation of inorganic carbon during photosynthesis. However, the efficiency of this “biological pump of carbon” strongly depends on the nature of the phytoplankton. Monitoring spatial and temporal variati...
Published in: | Global Biogeochemical Cycles |
---|---|
Main Authors: | , , , |
Other Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2008
|
Subjects: | |
Online Access: | https://hal.science/hal-00480911 https://hal.science/hal-00480911/document https://hal.science/hal-00480911/file/2007GB003154.pdf https://doi.org/10.1029/2007GB003154 |
Summary: | International audience Phytoplankton plays an important role in the global carbon cycle via the fixation of inorganic carbon during photosynthesis. However, the efficiency of this “biological pump of carbon” strongly depends on the nature of the phytoplankton. Monitoring spatial and temporal variations of the distribution of dominant phytoplankton groups at the global scale is thus of critical importance. Recently, an algorithm has been developed to detect the major dominant phytoplankton groups from anomalies of the marine signal measured by ocean color satellites. This method, called PHYSAT, allows to identify nanoeucaryotes, Prochlorococcus, Synechococcus and diatoms. In this paper, PHYSAT has been improved to detect an additional group, named phaeocystis‐like, by analyzing specific signal anomalies in the Southern Ocean during winter months. This new version of PHYSAT was then used to process daily global SeaWiFS GAC data between 1998 and 2006. The global distribution of major phytoplankton groups is presented in this study as a monthly climatology of the most frequent phytoplankton group. The contribution of nanoeucaryotes‐dominated waters to the global ocean varies from 45 to 70% depending on the season, whereas both diatoms and phaeocystis‐like contributions exhibit a stronger seasonal variability mostly due to the large blooms that occur during winter in the Southern Ocean. Three regions of particular interest are also studied in more details: the Southern Ocean, the North Atlantic, and the Equatorial Pacific. The North Atlantic diatom bloom shows a large interannual variability. Large blooms of both diatoms and phaeocystis‐like are observed during winter in the Southern Ocean, with a larger contribution from diatoms. Their respective geographical distribution is shown to be tightly related to the depth of the mixed‐layer, with diatoms prevailing in stratified waters. Synechococcus and Prochloroccocus prevail in the Equatorial Pacific, but our data show also sporadic diatoms contributions in this ... |
---|