Additional file 2 of The bacterial communities of Alaskan mosses and their contributions to N2-fixation

Additional file 1: Table S1. A list of all of the moss species sampled and the number of samples collected for each. Table S3. List of sites and site characteristics. 10 sites around Fairbanks, AK, USA, and four sites around Toolik Lake, AK, USA were sampled in 2016 and an additional 10 sites from a...

Full description

Bibliographic Details
Main Authors: Hannah Holland-Moritz (10186492), Julia E. M. Stuart (10186495), Lily R. Lewis (10186498), Samantha N. Miller (10186501), Michelle C. Mack (8949893), Jose Miguel Ponciano (3274791), Stuart F. McDaniel (3273798), Noah Fierer (121024)
Format: Other Non-Article Part of Journal/Newspaper
Language:unknown
Published: 2021
Subjects:
Online Access:https://doi.org/10.6084/m9.figshare.14100700.v1
Description
Summary:Additional file 1: Table S1. A list of all of the moss species sampled and the number of samples collected for each. Table S3. List of sites and site characteristics. 10 sites around Fairbanks, AK, USA, and four sites around Toolik Lake, AK, USA were sampled in 2016 and an additional 10 sites from around Anchorage, AK, USA, were added in 2017. Sites were chosen to capture a breadth of common habitat types in boreal and tundra ecosystems. Table S6. Table summarizing the results of a Mantel test between moss microbial communities and moss phylogenetic relatedness. Microbial communities are significantly correlated with phylogenetic structure. An analysis of Sphagnum shows that these results are primarily driven by phylogenetic structuring within the Sphagnum branch of the phylogeny. Table S7. Results of PERMANOVAs run on eight individual sites (a subset of the 24 total sites that had >4 moss species present in >3 replicates) showing the effect of species in explaining microbial community differences. Figure S1. The best environmental predictors shaping microbial communities for each of the seven most abundant host species. Table S8. Results of PERMANOVAs run on seven individual species showing the effect of site in explaining microbial community differences.