Summary: | Monitoring of air and ground temperature at Plateau Mountain (South‐Western Alberta) at short intervals (20 minutes) for two years shows vastly different thermal regimes in and beneath coarse blocky materials as opposed to mineral soils and rocks lacking substantial interconnecting voids. The dominant process of heat transfer in the upper layers is by rapid air movement through the voids to at least 50 cm depth as compared with slow conduction through the individual grains. Thermal response to a change in air temperature (positive or negative) is immediate and substantial, so it is not merely the result of the Balch effect. Rain and snow can also penetrate more deeply. These blocky materials are called kurums in Russia. Mean annual ground temperatures are 4–7 °C cooler in the blocky materials than in the adjacent mineral soils in cold climates, but this would be different in warmer climates. The ground temperature envelope is cone‐shaped rather than bell‐shaped, and this difference also occurs in mineral soils under a thin cover of blocks. There is also a smaller geothermal gradient within the zone affected directly by cooling/heating due to air movement. These processes appear to explain the occurrence of permafrost and substantial ice bodies in block fields such as rock glaciers below the limit of regional continuous permafrost in adjacent rocks and mineral soils. They also affect permafrost mapping and heat flow modelling, but offer a means of cooling near‐surface soils. © 1998 John Wiley & Sons, Ltd. L'enregistrement des températures de l'air et du sol dans un site de Plateau Mountain (dans le S‐O de l'Alberta, à 1950 m d'altitude) et à des intervalles de temps de 20 minutes pendant deux ans, montre que le régime thermique est très différent dans et sous des accumulations de blocs par rapport à ce que l'on observe dans des sols minéraux où il n'y a pas de vides interconnectés. Le processus dominant de transfert de chaleur dans les couches supérieures de ces accumulations de blocs est lié aux mouvements rapides de l'air dans les vides et ce, jusqu'à une profondeur d'au moins 50 cm; ce processus s'oppose aux phénomènes lents de conduction qui jouent dans d'autres sols. La réponse thermique à un changement (positif ou négatif) de la température de l'air est immédiate et substantielle, ce qui montre que ce n'est pas seulement le résultat de l'effet “Balch”. La pluie et la neige peuvent aussi pénétrer plus profondément. De telles accumulations de blocs sont appelées “kurums” en Russie. La température moyenne annuelle y est en climat froid de 4 à 7 °C inférieure dans les accumulations de blocs par rapport à celle de sols minéraux voisins, mais cela pourrait être différent dans des climats plus chauds. L'enveloppe des températures des sols sous les blocs a une forme en cône plutôt qu'en cloche et cette différence existe aussi dans les sols minéraux qui sont sous une fine couverture de blocs. Le gradient géothermique est aussi plus élevé dans le zone affectée directement par des refroidissements et des réchauffements contrôlés par les mouvements de l'air. Ces processus paraissent expliquer la présence de pergélisol et de masses de glace dans les champs de blocs, comme par exemple ceux qui recouvrent les glaciers rocheux. Le pergélisol s'y étend sous le limite du pergélisol régionalement continu dans les roches voisines et dans les sols minéraux. La cartographie du pergélisol et la modélisation de l'écoulement de chaleur peuvent être ainsi affectées par les accumulations de blocs. Celles‐ci constituent, par ailleurs, un moyen pour refroidir des sols proches de la surface. © 1998 John Wiley & Sons, Ltd.
|