The Thermal Regime of Mountain Permafrost at the Summit of Mont Jacques‐Cartier in the Gaspé Peninsula, Québec, Canada: A 37 Year Record of Fluctuations showing an Overall Warming Trend

The geothermal record for 1977–2014 from a 29 m deep borehole in permafrost on Mont Jacques‐Cartier, in southeastern Canada, shows substantial decadal fluctuations and an overall warming trend. An extremely thin winter snow cover on the wind‐blown summit favours the presence of permafrost. As a cons...

Full description

Bibliographic Details
Published in:Permafrost and Periglacial Processes
Main Authors: James Gray, Gautier Davesne, Daniel Fortier, Etienne Godin
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://doi.org/10.1002/ppp.1903
Description
Summary:The geothermal record for 1977–2014 from a 29 m deep borehole in permafrost on Mont Jacques‐Cartier, in southeastern Canada, shows substantial decadal fluctuations and an overall warming trend. An extremely thin winter snow cover on the wind‐blown summit favours the presence of permafrost. As a consequence, the instability of the thermal regime was found to be a direct response to air temperature variations modelled from data produced by the National Center for Environmental Prediction and National Center for Atmospheric Research. At a depth of 14 m, an increase of 0.4 °C from 1979 to 1984 was followed by a decrease of 0.7 °C over the next decade, and then by a marked, but irregular increase of 1 °C up to 2013. Since 2008, diurnal data, refined by a one‐dimensional, transient heat transfer model, indicate an active layer averaging 8.6 m in depth, but whose thickness is sensitive to fluctuations in annual mean ground surface temperatures. For a permafrost body already close to the thawing point, the continuation of the overall warming trend of the last 37 years would lead to its rapid degradation, and the permafrost would then become relict, thinning progressively both from the base and the surface. Copyright © 2016 John Wiley & Sons, Ltd.