Carbon Capture and Storage: A Review of Mineral Storage of CO 2 in Greece

As the demand for the reduction of global emissions of carbon dioxide (CO 2 ) increases, the need for anthropogenic CO 2 emission reductions becomes urgent. One promising technology to this end, is carbon capture and storage (CCS). This paper aims to provide the current state-of-the-art of CO 2 capu...

Full description

Bibliographic Details
Main Author: Kyriaki Kelektsoglou
Format: Article in Journal/Newspaper
Language:unknown
Subjects:
Online Access:https://www.mdpi.com/2071-1050/10/12/4400/pdf
https://www.mdpi.com/2071-1050/10/12/4400/
Description
Summary:As the demand for the reduction of global emissions of carbon dioxide (CO 2 ) increases, the need for anthropogenic CO 2 emission reductions becomes urgent. One promising technology to this end, is carbon capture and storage (CCS). This paper aims to provide the current state-of-the-art of CO 2 capure, transport, and storage and focuses on mineral carbonation, a novel method for safe and permanent CO 2 sequestration which is based on the reaction of CO 2 with calcium or magnesium oxides or hydroxides to form stable carbonate materials. Current commercial scale projects of CCS around Europe are outlined, demonstrating that only three of them are in operation, and twenty-one of them are in pilot phase, including the only one case of mineral carbonation in Europe the case of CarbFix in Iceland. This paper considers the necessity of CO 2 sequestration in Greece as emissions of about 64.6 million tons of CO 2 annually, originate from the lignite fired power plants. A real case study concerning the mineral storage of CO 2 in Greece has been conducted, demonstrating the applicability of several geological forms around Greece for mineral carbonation. The study indicates that Mount Pindos ophiolite and Vourinos ophiolite complex could be a promising means of CO 2 sequestration with mineral carbonation. Further studies are needed in order to confirm this aspect. carbon capture and storage; mineral carbonation; CO 2 sequestration; Greek power plants