Ecological Genomics for the Conservation of Dwarf Birch

PhD The persistence of woody plant populations faces numerous environmental challenges, including climate change, hybridisation and population fragmentation. Here I explore the genomic signatures and relative importance of these pressures in Dwarf Birch (Betula nana), which has declined significantl...

Full description

Bibliographic Details
Main Author: Borrell, James, S.
Format: Thesis
Language:English
Published: Queen Mary University of London 2017
Subjects:
Online Access:http://qmro.qmul.ac.uk/xmlui/handle/123456789/24556
Description
Summary:PhD The persistence of woody plant populations faces numerous environmental challenges, including climate change, hybridisation and population fragmentation. Here I explore the genomic signatures and relative importance of these pressures in Dwarf Birch (Betula nana), which has declined significantly over the last century across the Scottish Highlands. Firstly, I find that future climate is likely to result in a significant range reduction and that relict populations are likely to display reduced fitness. Secondly, I show that combining multiple mutation rate markers yields more accurate estimates of demographic history and the impact of fragmentation. I develop a novel method to derive high mutation rate markers from short sequencing reads, to facilitate more widespread application. Thirdly, I assess the degree of local adaptation, and explore potential for composite provenancing for the restoration of B. nana populations. Surprisingly, the data yields little evidence of adaptive introgression from the related tree B. pubescens, suggesting that this may not be an alternative route to climate tolerance. Finally, I review published literature on the population structure and genetic diversity of genus Betula in Europe and consider options for the conservation and management of B. nana, including assisted gene flow and prioritization of in situ genetic diversity. NERC CASE studentship NE/J017388/1