Physiological and Genetic Regulation for High Lipid Accumulation by Chlorella sorokiniana Strains from Different Environments of an Arctic Glacier, Desert, and Temperate Lake under Nitrogen Deprivation Conditions

Microalgae can adapt to extreme environments with specialized metabolic mechanisms. Here, we report comparative physiological and genetic regulation analyses of Chlorella sorokiniana from different environmental regions of an arctic glacier, desert, and temperate native lake in response to N depriva...

Full description

Bibliographic Details
Published in:Microbiology Spectrum
Main Authors: Zou, Shanmei, Huang, Zheng, Wu, Xuemin, Yu, Xinke
Format: Text
Language:English
Published: American Society for Microbiology 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9603131/
http://www.ncbi.nlm.nih.gov/pubmed/36200894
https://doi.org/10.1128/spectrum.00394-22
Description
Summary:Microalgae can adapt to extreme environments with specialized metabolic mechanisms. Here, we report comparative physiological and genetic regulation analyses of Chlorella sorokiniana from different environmental regions of an arctic glacier, desert, and temperate native lake in response to N deprivation, for screening the optimal strain with high lipid accumulation. Strains from the three regions showed different growth and biochemical compositions under N deprivation. The arctic glacier and desert strains produced higher soluble sugar content than strains from the native lake. The arctic glacier strains produced the highest levels of lipid content and neutral lipids under N deprivation compared with strains from desert and native lake. At a molecular level, the arctic strain produced more differentially expressed genes related to fatty acid biosynthesis, glycolysis gluconeogenesis, and glycerolipid metabolism. The important functional genes acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase), fatty acid synthase complex, pyruvate dehydrogenase component, and fatty acyl-acyl carrier protein (acyl-ACP) thioesterase were highly expressed in arctic strains. More acetyl-CoA was produced from glycolysis gluconeogenesis and glycerolipid metabolism, which then produced more fatty acid with the catalytic function of ACCase and acyl-ACP thioesterase in fatty acid biosynthesis. Our results indicated that the C. sorokiniana strains from the arctic region had the fullest potential for biodiesel production due to special genetic regulation related to fatty acid synthesis, glycolysis gluconeogenesis, and glycerolipid metabolism. IMPORTANCE It is important to reveal the physiological and genetic regulation mechanisms of microalgae for screening potential strains with high lipid production. Our results showed that Chlorella sorokiniana strains from arctic glacier, desert, and temperate native lake had different growth, biochemical composition, and genetic expression under N deprivation. The strains from an arctic glacier ...