A paleo-perspective on West Antarctic Ice Sheet retreat

Geological records of ice sheet collapse can provide perspective on the ongoing retreat of grounded and floating ice. An abrupt retreat of the West Antarctic Ice Sheet (WAIS) that occurred during the early deglaciation is well recorded on the eastern Ross Sea continental shelf. There, an ice shelf b...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Bart, Philip J., Kratochvil, Matthew
Format: Text
Language:English
Published: Nature Publishing Group UK 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9586952/
http://www.ncbi.nlm.nih.gov/pubmed/36271134
https://doi.org/10.1038/s41598-022-22450-3
Description
Summary:Geological records of ice sheet collapse can provide perspective on the ongoing retreat of grounded and floating ice. An abrupt retreat of the West Antarctic Ice Sheet (WAIS) that occurred during the early deglaciation is well recorded on the eastern Ross Sea continental shelf. There, an ice shelf breakup at 12.3 ± 0.6 cal. (calibrated) kyr BP caused accelerated ice-mass loss from the Bindschadler Ice Stream (BIS). The accelerated mass loss led to a significant negative mass balance that re-organized WAIS flow across the central and eastern Ross Sea. By ~ 11.5 ± 0.3 cal kyr BP, dynamic thinning of grounded ice triggered a retreat that opened a ~ 200-km grounding-line embayment on the Whales Deep Basin (WDB) middle continental shelf. Here, we reconstruct the pattern, duration and rate of retreat from a backstepping succession of small-scale grounding-zone ridges that formed on the embayment’s eastern flank. We used two end-member paleo-sediment fluxes, i.e., accumulation rates, to convert the cumulative sediment volumes of the ridge field to elapsed time for measured distances of grounding-line retreat. The end-members fluxes correspond to deposition rates for buttressed and unbuttressed ice stream flow. Both scenarios require sustained rapid retreat that exceeded several centuries. Grounding-line retreat is estimated to have averaged between ~ 100 ± 32 and ~ 700 ± 79 ma(−1). The evidence favors the latter scenario because iceberg furrows that cross cut the ridges in deep water require weakly buttressed flow as the embayment opened. In comparison with the modern grounding-zone dynamics, this paleo-perspective provides confidence in model projections that a large-scale sustained contraction of grounded ice is underway in several Pacific-Ocean sectors of the WAIS.