Enhanced Arctic sea ice melting controlled by larger heat discharge of mid-Holocene rivers
Arctic sea ice retreat is linked to extrapolar thermal energy import, while the potential impact of pan-Arctic river heat discharge on sea-ice loss has been unresolved. We reconstructed the Holocene history of Arctic sea ice and Russian pan-Arctic river heat discharge, combining ice-rafted debris re...
Published in: | Nature Communications |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Text |
Language: | English |
Published: |
Nature Publishing Group UK
2022
|
Subjects: | |
Online Access: | http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9470582/ https://doi.org/10.1038/s41467-022-33106-1 |
Summary: | Arctic sea ice retreat is linked to extrapolar thermal energy import, while the potential impact of pan-Arctic river heat discharge on sea-ice loss has been unresolved. We reconstructed the Holocene history of Arctic sea ice and Russian pan-Arctic river heat discharge, combining ice-rafted debris records and sedimentation rates from the East Siberian Arctic Shelf with a compilation of published paleoclimate and observational data. In the mid-Holocene, the early summer (June–July) solar insolation was higher than that during the late Holocene, which led to a larger heat discharge of the Russian pan-Arctic rivers and contributed to more Arctic sea ice retreat. This intensified decline of early-summer sea ice accelerated the melting of sea ice throughout the summertime by lowering regional albedos. Our findings highlight the important impact of the larger heat discharge of pan-Arctic rivers, which can reinforce Arctic sea-ice loss in the summer in the context of global warming. |
---|