How Well Do ‘Catch-Only’ Assessment Models Capture Catch Time Series Start Years and Default Life History Prior Values? A Preliminary Stock Assessment of the South Atlantic Ocean Blue Shark Using a Catch-Based Model

SIMPLE SUMMARY: Blue shark species are at the top of the list of captured bycatch sharks in most tuna and tuna-like fisheries. As a consequence, their populations have been declining due to overfishing; thus, there is a need for the assessment of their stocks to better understand blue sharks’ stock...

Full description

Bibliographic Details
Published in:Animals
Main Authors: Kindong, Richard, Wu, Feng, Tian, Siquan, Sarr, Ousmane
Format: Text
Language:English
Published: MDPI 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179247/
https://doi.org/10.3390/ani12111386
Description
Summary:SIMPLE SUMMARY: Blue shark species are at the top of the list of captured bycatch sharks in most tuna and tuna-like fisheries. As a consequence, their populations have been declining due to overfishing; thus, there is a need for the assessment of their stocks to better understand blue sharks’ stock status. Most bycatch species lack sufficient data for traditional stock assessment models to be implemented. Blue sharks in the South Atlantic have been assessed in the past using a state-space production model. Given the development of new assessment models and the use of up-to-date data, their stock status was evaluated using a new state-space production model (CMSY++). We used different catch time series, abundance indices and priors to measure the intrinsic growth rate r to evaluate their influence on the outputs of CMSY++. We identified from many scenarios that the blue shark stock in the South Atlantic may be witnessing overfishing and is being overfished. ABSTRACT: CMSY++, an improved version of the CMSY approach developed from Catch-MSY which uses a Bayesian implementation of a modified Schaefer model and can predict stock status and exploitation, was used in the present study. Evaluating relative performance is vital in situations when dealing with fisheries with different catch time series start years and biological prior information. To identify the influences of data inputs on CMSY++ outputs, this paper evaluated the use of a nominal reported catch and a reconstructed catch dataset of the South Atlantic blue shark alongside different priors of the blue shark’s productivity/resilience (r) coupled with different indices of abundance. Results from the present study showed that different catch time series start years did not have a significant influence on the estimation of the biomass and fishing reference points reported by CMSY++. However, uninformative priors of r affected the output results of the model. The developed model runs with varying and joint abundance indices showed conflicting results, as ...