Enzymatic synthesis and self-assembly of glycolipids: robust self-healing and wound closure performance of assembled soft materials

In developing countries, wounds are a major health concern and pose a significant problem. Hence, the development of new materials that can act as scaffolds for in situ tissue regeneration and regrowth is necessary. In this report, we present a new class of injectable oleogel and composite gel deriv...

Full description

Bibliographic Details
Published in:RSC Advances
Main Authors: Prasad, Yadavali Siva, Saritha, Balasubramani, Tamizhanban, Ayyapillai, Lalitha, Krishnamoorthy, Kabilan, Sakthivel, Maheswari, C. Uma, Sridharan, Vellaisamy, Nagarajan, Subbiah
Format: Text
Language:English
Published: The Royal Society of Chemistry 2018
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9089313/
https://doi.org/10.1039/c8ra07703g
Description
Summary:In developing countries, wounds are a major health concern and pose a significant problem. Hence, the development of new materials that can act as scaffolds for in situ tissue regeneration and regrowth is necessary. In this report, we present a new class of injectable oleogel and composite gel derived from glycolipids that provide reversible interlinked 3D fiberous network architecture for effective wound closure by tissue regrowth and regeneration. Glycolipids were derived from α-chloralose and various vinyl esters using Novozyme 435, an immobilized lipase B from Candida antarctica as a catalyst, in good yield. These glycolipids undergo spontaneous self-assembly in paraffin oil to form an oleogel, in which curcumin was successfully incorporated to generate a composite gel. Morphological analysis of the oleogel and composite gel clearly revealed the formation of a 3D fiberous network. Rheological investigation revealed the thermal and mechanical processability of the oleogel and composite gel under various experimental conditions. Interestingly, the developed injectable oleogel and composite gel are able to accelerate the wound healing process by regulating the overlapping phases of inflammation, cell proliferation and extracellular matrix remodelling. Since chloralose displays anesthetic properties, this study will establish a new strategy to develop anesthetic wound healing oleogels in the future.