Effects of Local Acidification on Benthic Communities at Shallow Hydrothermal Vents of the Aeolian Islands (Southern Tyrrhenian, Mediterranean Sea)

SIMPLE SUMMARY: Ocean acidification is causing major changes in marine ecosystems, with varying levels of impact depending on the region and habitat investigated. Here, we report noticeable changes in both meio- and macrobenthic assemblages at shallow hydrothermal vents located in the Mediterranean...

Full description

Bibliographic Details
Published in:Biology
Main Authors: Fanelli, Emanuela, Di Giacomo, Simone, Gambi, Cristina, Bianchelli, Silvia, Da Ros, Zaira, Tangherlini, Michael, Andaloro, Franco, Romeo, Teresa, Corinaldesi, Cinzia, Danovaro, Roberto
Format: Text
Language:English
Published: MDPI 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8868750/
https://doi.org/10.3390/biology11020321
Description
Summary:SIMPLE SUMMARY: Ocean acidification is causing major changes in marine ecosystems, with varying levels of impact depending on the region and habitat investigated. Here, we report noticeable changes in both meio- and macrobenthic assemblages at shallow hydrothermal vents located in the Mediterranean Sea. In general, the areas impacted by the vent fluids showed decrease in the abundance of several taxa and a shift in community composition, but with a clear biomass reduction evident only for macrofauna. CO(2) emissions at shallow hydrothermal vents cause a progressive simplification of community structure and a general biodiversity decline due to the loss of the most sensitive meio- and macrofaunal taxa, which were replaced by the more tolerant groups, such as oligochaetes, or highly mobile species, able to escape from extreme conditions. Our results provide new insight on the tolerance of marine meio- and macrofaunal taxa to the extreme conditions generated by hydrothermal vent emissions in shallow-water ecosystems. ABSTRACT: The Aeolian Islands (Mediterranean Sea) host a unique hydrothermal system called the “Smoking Land” due to the presence of over 200 volcanic CO(2)-vents, resulting in water acidification phenomena and the creation of an acidified benthic environment. Here, we report the results of a study conducted at three sites located at ca. 16, 40, and 80 m of depth, and characterized by CO(2) emissions to assess the effects of acidification on meio- and macrobenthic assemblages. Acidification caused significant changes in both meio- and macrofaunal assemblages, with a clear decrease in terms of abundance and a shift in community composition. A noticeable reduction in biomass was observed only for macrofauna. The most sensitive meiofaunal taxa were kinorhynchs and turbellarians that disappeared at the CO(2) sites, while the abundance of halacarids and ostracods increased, possibly as a result of the larger food availability and the lower predatory pressures by the sensitive meiofaunal and macrofaunal ...