Selective Inner Hair Cell Loss in a Neonate Harbor Seal (Phoca vitulina)

SIMPLE SUMMARY: Congenital hearing loss (i.e., hearing impairment present at birth) is recognized in humans and other terrestrial species, but there is a lack of information on congenital malformations and associated hearing loss in pinnipeds (seals, sea lions, and walruses). Baseline knowledge on m...

Full description

Bibliographic Details
Published in:Animals
Main Authors: Morell, Maria, Rojas, Laura, Haulena, Martin, Busse, Björn, Siebert, Ursula, Shadwick, Robert E., Raverty, Stephen A.
Format: Text
Language:English
Published: MDPI 2022
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8772928/
https://doi.org/10.3390/ani12020180
Description
Summary:SIMPLE SUMMARY: Congenital hearing loss (i.e., hearing impairment present at birth) is recognized in humans and other terrestrial species, but there is a lack of information on congenital malformations and associated hearing loss in pinnipeds (seals, sea lions, and walruses). Baseline knowledge on marine mammal inner ear malformations is essential to differentiate between congenital and acquired abnormalities, which may be caused by infectious agents, age, or anthropogenic interactions, such as noise exposure. Analysis of the cochlea of a neonate harbor seal (Phoca vitulina) revealed bilateral loss of inner hair cells (sensory cells responsible for transducing the auditory signal) while the outer hair cells (sensory cells responsible for sound amplification and frequency selectivity and sensitivity) were intact. The selective inner hair cell loss (up to 84.6% of loss) was more severe in the basal turn, where the high frequencies are encoded. Potential causes and consequences are discussed. This is the first report of a case of selective inner hair cell loss in a marine mammal neonate, likely congenital. ABSTRACT: Congenital hearing loss is recognized in humans and other terrestrial species. However, there is a lack of information on its prevalence or pathophysiology in pinnipeds. It is important to have baseline knowledge on marine mammal malformations in the inner ear, to differentiate between congenital and acquired abnormalities, which may be caused by infectious pathogens, age, or anthropogenic interactions, such as noise exposure. Ultrastructural evaluation of the cochlea of a neonate harbor seal (Phoca vitulina) by scanning electron microscopy revealed bilateral loss of inner hair cells with intact outer hair cells. The selective inner hair cell loss was more severe in the basal turn, where high-frequency sounds are encoded. The loss of inner hair cells started around 40% away from the apex or tip of the spiral, reaching a maximum loss of 84.6% of hair cells at 80–85% of the length from the apex. Potential ...