Polycyclic aromatic hydrocarbons in the snow cover of the northern city agglomeration

Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were qualitatively and quantitatively assessed by high-performance liquid chromatography with fluorescence detection in snow samples collected at 46 sites of Arkhangelsk as a world’s largest city above 64 degrees north latitude. The average, m...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Kozhevnikov, A. Yu., Falev, D. I., Sypalov, S. A., Kozhevnikova, I. S., Kosyakov, D. S.
Format: Text
Language:English
Published: Nature Publishing Group UK 2021
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8463559/
http://www.ncbi.nlm.nih.gov/pubmed/34561520
https://doi.org/10.1038/s41598-021-98386-x
Description
Summary:Sixteen priority polycyclic aromatic hydrocarbons (PAHs) were qualitatively and quantitatively assessed by high-performance liquid chromatography with fluorescence detection in snow samples collected at 46 sites of Arkhangelsk as a world’s largest city above 64 degrees north latitude. The average, maximum and minimum PAH concentrations in snow were 168, 665, and 16 ng/kg, respectively. The average toxic equivalent value in benzo(a)pyrene units was 3.6 ng/kg, which is three-fold lower than the established maximum permissible concentration and considered an evidence of a low/moderate level of snow pollution with PAHs. The pollution origin was assessed using specific markers based on PAHs ratios in the studied samples. The pyrogenic sources of PAH emission were predominate, whereas the significant contributions from both transport and solid fuel combustion were observed. Benzo(a)pyrene concentrations are highly correlated with the levels of other PAHs with higher molecular weights.