Synchronizing volcanic, sedimentary, and ice core records of Earth’s last magnetic polarity reversal

Reversal of Earth’s magnetic field polarity every 10(5) to 10(6) years is among the most far-reaching, yet enigmatic, geophysical phenomena. The short duration of reversals make precise temporal records of past magnetic field behavior paramount to understanding the processes that produce them. We co...

Full description

Bibliographic Details
Published in:Science Advances
Main Authors: Singer, Brad S., Jicha, Brian R., Mochizuki, Nobutatsu, Coe, Robert S.
Format: Text
Language:English
Published: American Association for the Advancement of Science 2019
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6685714/
http://www.ncbi.nlm.nih.gov/pubmed/31457087
https://doi.org/10.1126/sciadv.aaw4621
Description
Summary:Reversal of Earth’s magnetic field polarity every 10(5) to 10(6) years is among the most far-reaching, yet enigmatic, geophysical phenomena. The short duration of reversals make precise temporal records of past magnetic field behavior paramount to understanding the processes that produce them. We correlate new (40)Ar/(39)Ar dates from transitionally magnetized lava flows to astronomically dated sediment and ice records to map the evolution of Earth’s last reversal. The final 180° polarity reversal at ~773 ka culminates a complex process beginning at ~795 ka with weakening of the field, succeeded by increased field intensity manifested in sediments and ice, and then by an excursion and weakening of intensity at ~784 ka that heralds a >10 ka period wherein sediments record highly variable directions. The 22 ka evolution of this reversal suggested by our findings is mirrored by a numerical geodynamo simulation that may capture much of the naturally observed reversal process.