Tristatic observation of polar mesosphere winter echoes with the EISCAT VHF radar on 8 January 2014: a case study

Polar mesosphere winter echoes (PMWE) were observed at 70 km over Tromsø, Norway, on 8 January 2014 using the tristatic configuration of the European incoherent scatter VHF radar. For the interval 11:00–13:00 UT where the strongest patch of PMWE of about 6-min duration was detected, the spectra of t...

Full description

Bibliographic Details
Published in:Earth, Planets and Space
Main Authors: Belova, Evgenia, Kawnine, Maria, Häggström, Ingemar, Sergienko, Tima, Kirkwood, Sheila, Tjulin, Anders
Format: Text
Language:English
Published: Springer Berlin Heidelberg 2018
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435039/
https://doi.org/10.1186/s40623-018-0878-5
Description
Summary:Polar mesosphere winter echoes (PMWE) were observed at 70 km over Tromsø, Norway, on 8 January 2014 using the tristatic configuration of the European incoherent scatter VHF radar. For the interval 11:00–13:00 UT where the strongest patch of PMWE of about 6-min duration was detected, the spectra of the received signal were analysed for the Tromsø site and altitude profiles of spectral parameters were derived. For the remote sites Kiruna and Sodankylä, the Doppler velocities and their vertical shear were determined by using the measured autocorrelation functions. Ducted gravity waves with periods of 5–10 min were found in the vertical wind velocity between 66 and 81 km altitudes. The duct might be formed around 70 and 77 km altitude where horizontal wind maxima were observed with the Kiruna receiver. However, we did not find any close relation between wind shear at 70 km altitude and PMWE at the same height: the wind shear was present for 2 h, but PMWE for only 6 min. Enhanced spectral width in the vertical Tromsø beam was observed for the PMWE patch. We discussed these experimental findings in relation to the winter echo generation mechanism. Our conclusion is that the presence of patchy negatively charged small-sized dust might explain the observations although a gravity wave breaking mechanism cannot be completely rejected. [Image: see text]