Multispecies comparisons of adaptability to climate change: A role for life‐history characteristics?

Phenological advancement allows individuals to adapt to climate change by timing life‐history events to the availability of key resources so that individual fitness is maximized. However, different trophic levels may respond to changes in their environment at different rates, potentially leading to...

Full description

Bibliographic Details
Published in:Ecology and Evolution
Main Authors: Saalfeld, Sarah T., Lanctot, Richard B.
Format: Text
Language:English
Published: John Wiley and Sons Inc. 2017
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5743480/
https://doi.org/10.1002/ece3.3517
Description
Summary:Phenological advancement allows individuals to adapt to climate change by timing life‐history events to the availability of key resources so that individual fitness is maximized. However, different trophic levels may respond to changes in their environment at different rates, potentially leading to a phenological mismatch. This may be especially apparent in the highly seasonal arctic environment that is experiencing the effects of climate change more so than any other region. During a 14‐year study near Utqiaġvik (formerly Barrow), Alaska, we estimated phenological advancement in egg laying in relation to snowmelt for eight arctic‐breeding shorebirds and investigated potential linkages to species‐specific life‐history characteristics. We found that snowmelt advanced 0.8 days/year—six times faster than the prior 60‐year period. During this same time, six of the eight species exhibited phenological advancement in laying dates (varying among species from 0.1 to 0.9 days earlier per year), although no species appeared capable of keeping pace with advancing snowmelt. Phenological changes were likely the result of high phenotypic plasticity, as all species investigated in this study showed high interannual variability in lay dates. Commonality among species with similar response rates to timing of snowmelt suggests that nesting later and having an opportunistic settlement strategy may increase the adaptability of some species to changing climate conditions. Other life‐history characteristics, such as migration strategy, previous site experience, and mate fidelity did not influence the ability of individuals to advance laying dates. As a failure to advance egg laying is likely to result in greater phenological mismatch, our study provides an initial assessment of the relative risk of species to long‐term climatic changes.