Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum

Global warming during the Palaeocene-Eocene Thermal Maximum1,2 (PETM, ~56 Ma) is commonly interpreted as being primarily driven by the destabilization of carbon from surficial sedimentary reservoirs such as methane hydrates3. However, the source(s) of carbon remain controversial1,3–5. Resolving this...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Gutjahr, Marcus, Ridgwell, Andy, Sexton, Philip F., Anagnostou, Eleni, Pearson, Paul N., Pälike, Heiko, Norris, Richard D., Thomas, Ellen, Foster, Gavin L.
Format: Text
Language:English
Published: 2017
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5582631/
http://www.ncbi.nlm.nih.gov/pubmed/28858305
https://doi.org/10.1038/nature23646
Description
Summary:Global warming during the Palaeocene-Eocene Thermal Maximum1,2 (PETM, ~56 Ma) is commonly interpreted as being primarily driven by the destabilization of carbon from surficial sedimentary reservoirs such as methane hydrates3. However, the source(s) of carbon remain controversial1,3–5. Resolving this is key to understanding the proximal cause, as well as quantifying the roles of triggers versus feedbacks in driving the event. Here we present new boron isotope data – a proxy for seawater pH – that demonstrate the occurrence of persistently suppressed surface ocean pH across the PETM. Our pH data, alongside a paired carbon isotope record, are assimilated in an Earth system model to reconstruct the unfolding carbon cycle dynamics across the event6,7. We find strong evidence for a much larger (>10,000 PgC) and on average isotopically heavier carbon source than considered previously8,9. This leads us to identify volcanism associated with the North Atlantic Igneous Province, rather than carbon from a surficial reservoir, as the main driver of the PETM10,11. We also find that, although amplifying organic carbon feedbacks with climate likely played only a subordinate role in driving the event, enhanced organic matter burial was important in ultimately sequestering the released carbon and accelerating the recovery of the Earth system12.