Millennial-scale northern Hemisphere Atlantic-Pacific climate teleconnections in the earliest Middle Pleistocene

Suborbital-scale climate variations, possibly caused by solar activity, are observed in the Holocene and last-glacial climates. Recently published bicentennial-resolution paleoceanic environmental records reveal millennial-scale high-amplitude oscillations postdating the last geomagnetic reversal in...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Hyodo, Masayuki, Bradák, Balázs, Okada, Makoto, Katoh, Shigehiro, Kitaba, Ikuko, Dettman, David L., Hayashi, Hiroki, Kumazawa, Koyo, Hirose, Kotaro, Kazaoka, Osamu, Shikoku, Kizuku, Kitamura, Akihisa
Format: Text
Language:English
Published: Nature Publishing Group UK 2017
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577287/
http://www.ncbi.nlm.nih.gov/pubmed/28855678
https://doi.org/10.1038/s41598-017-10552-2
Description
Summary:Suborbital-scale climate variations, possibly caused by solar activity, are observed in the Holocene and last-glacial climates. Recently published bicentennial-resolution paleoceanic environmental records reveal millennial-scale high-amplitude oscillations postdating the last geomagnetic reversal in the Marine Isotope Stage (MIS) 19 interglacial. These oscillations, together with decoupling of post-reversal warming from maximum sea-level highstand in mid-latitudes, are key features for understanding the climate system of MIS 19 and the following Middle Pleistocene. It is unclear whether the oscillations are synchronous, or have the same driver as Holocene cycles. Here we present a high resolution record of western North Pacific submarine anoxia and sea surface bioproductivity from the Chiba Section, central Japan. The record reveals many oxic events in MIS 19, coincident with cold intervals, or with combined cold and sea-level fall events. This allows detailed correlations with paleoceanic records from the mid-latitude North Atlantic and Osaka Bay, southwest Japan. We find that the millennial-scale oscillations are synchronous between East and West hemispheres. In addition, during the two warmest intervals, bioproductivity follows the same pattern of change modulated by bicentennial cycles that are possibly related to solar activity.