A refined method for analysis of 4,4′-dicofol and 4,4′-dichlorobenzophenone

The acaricide, dicofol, is a well-known pesticide and partly a substitute for dichlorodiphenyltrichloroethane (DDT). Only few reports on environmental occurrence and concentrations have been reported calling for improvements. Hence, an analytical method was further developed for dicofol and dichloro...

Full description

Bibliographic Details
Published in:Environmental Science and Pollution Research
Main Authors: Yin, Ge, Athanassiadis, Ioannis, Bergman, Åke, Zhou, Yihui, Qiu, Yanling, Asplund, Lillemor
Format: Text
Language:English
Published: Springer Berlin Heidelberg 2017
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5434158/
http://www.ncbi.nlm.nih.gov/pubmed/28386885
https://doi.org/10.1007/s11356-017-8956-y
Description
Summary:The acaricide, dicofol, is a well-known pesticide and partly a substitute for dichlorodiphenyltrichloroethane (DDT). Only few reports on environmental occurrence and concentrations have been reported calling for improvements. Hence, an analytical method was further developed for dicofol and dichlorobenzophenone (DCBP) to enable assessments of their environmental occurrence. Concentrated sulfuric acid was used to remove lipids and to separate dicofol from DCBP. On-column injection was used as an alternative to splitless injection to protect dicofol from thermal decomposition. By the method presented herein, it is possible to quantify dicofol and DCBP in the same samples. Arctic cod (Gadus morhua) were spiked at two dose levels and the recoveries were determined. The mean recovery for dicofol was 65% at the low dose (1 ng) and 77% at the high dose (10 ng). The mean recovery for DCBP was 99% at the low dose (9.2 ng) and 146% at the high dose (46 ng). The method may be further improved by use of another lipid removal method, e.g., gel permeation chromatography. The method implies a step forward in dicofol environmental assessments.