Water-carbon dioxide solid phase equilibria at pressures above 4 GPa

A solid phase in the mixed water-carbon dioxide system, previously identified as carbonic acid, was observed in the high-pressure diamond-anvil cell. The pressure-temperature paths of both its melting and peritectic curves were measured, beginning at 4.4 GPa and 165 °C (where it exists in a quadrupl...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Abramson, E. H., Bollengier, O., Brown, J. M.
Format: Text
Language:English
Published: Nature Publishing Group UK 2017
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5429767/
http://www.ncbi.nlm.nih.gov/pubmed/28400579
https://doi.org/10.1038/s41598-017-00915-0
Description
Summary:A solid phase in the mixed water-carbon dioxide system, previously identified as carbonic acid, was observed in the high-pressure diamond-anvil cell. The pressure-temperature paths of both its melting and peritectic curves were measured, beginning at 4.4 GPa and 165 °C (where it exists in a quadruple equilibrium, together with an aqueous fluid and the ices H2O(VII) and CO2(I)) and proceeding to higher pressures and temperatures. Single-crystal X-ray diffraction revealed a triclinic crystal with unit cell parameters (at 6.5 GPa and 20 °C) of a = 5.88 Å, b = 6.59 Å, c = 6.99 Å, α = 88.7°, β = 79.7°, and γ = 67.7°. Raman spectra exhibit a major line at ~1080 cm−1 and lattice modes below 300 cm−1.