Siple Dome ice reveals two modes of millennial CO2 change during the last ice age

Reconstruction of atmospheric CO2 during times of past abrupt climate change may help us better understand climate-carbon cycle feedbacks. Previous ice core studies reveal simultaneous increases in atmospheric CO2 and Antarctic temperature during times when Greenland and the northern hemisphere expe...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Ahn, Jinho, Brook, Edward J.
Format: Text
Language:English
Published: Nature Pub. Group 2014
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015316
http://www.ncbi.nlm.nih.gov/pubmed/24781344
https://doi.org/10.1038/ncomms4723
Description
Summary:Reconstruction of atmospheric CO2 during times of past abrupt climate change may help us better understand climate-carbon cycle feedbacks. Previous ice core studies reveal simultaneous increases in atmospheric CO2 and Antarctic temperature during times when Greenland and the northern hemisphere experienced very long, cold stadial conditions during the last ice age. Whether this relationship extends to all of the numerous stadial events in the Greenland ice core record has not been clear. Here we present a high-resolution record of atmospheric CO2 from the Siple Dome ice core, Antarctica for part of the last ice age. We find that CO2 does not significantly change during the short Greenlandic stadial events, implying that the climate system perturbation that produced the short stadials was not strong enough to substantially alter the carbon cycle.