Effects of Elevated Temperature and Carbon Dioxide on the Growth and Survival of Larvae and Juveniles of Three Species of Northwest Atlantic Bivalves

Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginic...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Talmage, Stephanie C., Gobler, Christopher J.
Format: Text
Language:English
Published: Public Library of Science 2011
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204984
http://www.ncbi.nlm.nih.gov/pubmed/22066018
https://doi.org/10.1371/journal.pone.0026941
Description
Summary:Rising CO2 concentrations and water temperatures this century are likely to have transformative effects on many coastal marine organisms. Here, we compared the responses of two life history stages (larval, juvenile) of three species of calcifying bivalves (Mercenaria mercenaria, Crassostrea virginica, and Argopecten irradians) to temperatures (24 and 28°C) and CO2 concentrations (∼250, 390, and 750 ppm) representative of past, present, and future summer conditions in temperate estuaries. Results demonstrated that increases in temperature and CO2 each significantly depressed survival, development, growth, and lipid synthesis of M. mercenaria and A. irradians larvae and that the effects were additive. Juvenile M. mercenaria and A. irradians were negatively impacted by higher temperatures while C. virginica juveniles were not. C. virginica and A. irradians juveniles were negatively affected by higher CO2 concentrations, while M. mercenaria was not. Larvae were substantially more vulnerable to elevated CO2 than juvenile stages. These findings suggest that current and future increases in temperature and CO2 are likely to have negative consequences for coastal bivalve populations.