Integrating Stomach Content and Stable Isotope Analyses to Quantify the Diets of Pygoscelid Penguins

Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficult...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Polito, Michael J., Trivelpiece, Wayne Z., Karnovsky, Nina J., Ng, Elizabeth, Patterson, William P., Emslie, Steven D.
Format: Text
Language:English
Published: Public Library of Science 2011
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3203888
http://www.ncbi.nlm.nih.gov/pubmed/22053199
https://doi.org/10.1371/journal.pone.0026642
Description
Summary:Stomach content analysis (SCA) and more recently stable isotope analysis (SIA) integrated with isotopic mixing models have become common methods for dietary studies and provide insight into the foraging ecology of seabirds. However, both methods have drawbacks and biases that may result in difficulties in quantifying inter-annual and species-specific differences in diets. We used these two methods to simultaneously quantify the chick-rearing diet of Chinstrap (Pygoscelis antarctica) and Gentoo (P. papua) penguins and highlight methods of integrating SCA data to increase accuracy of diet composition estimates using SIA. SCA biomass estimates were highly variable and underestimated the importance of soft-bodied prey such as fish. Two-source, isotopic mixing model predictions were less variable and identified inter-annual and species-specific differences in the relative amounts of fish and krill in penguin diets not readily apparent using SCA. In contrast, multi-source isotopic mixing models had difficulty estimating the dietary contribution of fish species occupying similar trophic levels without refinement using SCA-derived otolith data. Overall, our ability to track inter-annual and species-specific differences in penguin diets using SIA was enhanced by integrating SCA data to isotopic mixing modes in three ways: 1) selecting appropriate prey sources, 2) weighting combinations of isotopically similar prey in two-source mixing models and 3) refining predicted contributions of isotopically similar prey in multi-source models.