Divergent ecosystem responses within a benthic marine community to ocean acidification

Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO2 vents in the Mediterra...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Kroeker, Kristy J., Micheli, Fiorenza, Gambi, Maria Cristina, Martz, Todd R.
Format: Text
Language:English
Published: National Academy of Sciences 2011
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167536
http://www.ncbi.nlm.nih.gov/pubmed/21844331
https://doi.org/10.1073/pnas.1107789108
Description
Summary:Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO2 vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species’ responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.