Trophic position influences the efficacy of seabirds as metal biovectors

Seabirds represent a well documented biological transport pathway of nutrients from the ocean to the land by nesting in colonies and providing organic subsidies (feces, carcasses, dropped food) to these sites. We investigated whether seabirds that feed at different trophic levels vary in their poten...

Full description

Bibliographic Details
Published in:Proceedings of the National Academy of Sciences
Main Authors: Michelutti, Neal, Blais, Jules M., Mallory, Mark L., Brash, Jaclyn, Thienpont, Joshua, Kimpe, Lynda E., Douglas, Marianne S. V., Smol, John P.
Format: Text
Language:English
Published: National Academy of Sciences 2010
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2890848
http://www.ncbi.nlm.nih.gov/pubmed/20498048
https://doi.org/10.1073/pnas.1001333107
Description
Summary:Seabirds represent a well documented biological transport pathway of nutrients from the ocean to the land by nesting in colonies and providing organic subsidies (feces, carcasses, dropped food) to these sites. We investigated whether seabirds that feed at different trophic levels vary in their potency as biovectors of metals, which can bioaccumulate through the marine foodweb. Our study site, located on a small island in Arctic Canada, contains the unique scenario of two nearby ponds, one of which receives inputs almost exclusively from upper trophic level piscivores (Arctic terns, Sterna paradisaea) and the other mainly from lower trophic level molluscivores (common eiders, Somateria mollissima). We used dated sediment cores to compare differences in diatoms, metal concentrations and also stable isotopes of nitrogen (δ15N), which reflect trophic position. We show that the seabirds carry species-specific mixtures of metals that are ultimately shunted to their nesting sites. For example, sediments from the tern-affected pond recorded the highest levels of δ15N and the greatest concentrations of metals that are known to bioaccumulate, including Hg and Cd. In contrast, the core from the eider-affected site registered lower δ15N values, but higher concentrations of Pb, Al, and Mn. These metals have been recorded at their greatest concentrations in eiders relative to other seabirds, including Arctic terns. These data indicate that metals may be used to track seabird population dynamics, and that some metal tracers may even be species-specific. The predominance of large seabird colonies on every continent suggests that similar processes are operating along coastlines worldwide.