The role of cavities in protein dynamics: Crystal structure of a photolytic intermediate of a mutant myoglobin

We determined the structure of the photolytic intermediate of a sperm whale myoglobin (Mb) mutant called Mb-YQR [Leu-(B10)→Tyr; His(E7)→Gln; Thr(E10)→Arg] to 1.4-Å resolution by ultra-low temperature (20 K) x-ray diffraction. Starting with the CO complex, illumination leads to photolysis of the Fe–C...

Full description

Bibliographic Details
Main Authors: Brunori, Maurizio, Vallone, Beatrice, Cutruzzolà, Francesca, Travaglini-Allocatelli, Carlo, Berendzen, Joel, Chu, Kelvin, Sweet, Robert M., Schlichting, Ilme
Format: Text
Language:English
Published: The National Academy of Sciences 2000
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15753
http://www.ncbi.nlm.nih.gov/pubmed/10681426
Description
Summary:We determined the structure of the photolytic intermediate of a sperm whale myoglobin (Mb) mutant called Mb-YQR [Leu-(B10)→Tyr; His(E7)→Gln; Thr(E10)→Arg] to 1.4-Å resolution by ultra-low temperature (20 K) x-ray diffraction. Starting with the CO complex, illumination leads to photolysis of the Fe–CO bond, and migration of the photolyzed carbon monoxide (CO*) to a niche in the protein 8.1 Å from the heme iron; this cavity corresponds to that hosting an atom of Xe when the crystal is equilibrated with xenon gas at 7 atmospheres [Tilton, R. F., Jr., Kuntz, I. D. & Petsko, G. A. (1984) Biochemistry 23, 2849–2857]. The site occupied by CO* corresponds to that predicted by molecular dynamics simulations previously carried out to account for the NO geminate rebinding of Mb-YQR observed in laser photolysis experiments at room temperature. This secondary docking site differs from the primary docking site identified by previous crystallographic studies on the photolyzed intermediate of wild-type sperm whale Mb performed at cryogenic temperatures [Teng et al. (1994) Nat. Struct. Biol. 1, 701–705] and room temperature [Šrajer et al. (1996) Science 274, 1726–1729]. Our experiment shows that the pathway of a small molecule in its trajectory through a protein may be modified by site-directed mutagenesis, and that migration within the protein matrix to the active site involves a limited number of pre-existing cavities identified in the interior space of the protein.