Mitochondrial cytochrome B DNA variation in the high-fecundity atlantic cod: trans-atlantic clines and shallow gene genealogy.

An analysis of sequence variation of 250 bp of the mitochondrial cytochrome b gene of 1278 Atlantic cod Gadus morhua ranging from Newfoundland to the Baltic shows four high-frequency (>8%) haplotypes and a number of rare and singleton haplotypes. Variation is primarily synonymous mutations. Natur...

Full description

Bibliographic Details
Main Author: Arnason, Einar
Format: Text
Language:English
Published: 2004
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470818
http://www.ncbi.nlm.nih.gov/pubmed/15126405
Description
Summary:An analysis of sequence variation of 250 bp of the mitochondrial cytochrome b gene of 1278 Atlantic cod Gadus morhua ranging from Newfoundland to the Baltic shows four high-frequency (>8%) haplotypes and a number of rare and singleton haplotypes. Variation is primarily synonymous mutations. Natural selection acting directly on these variants is either absent or very weak. Common haplotypes show regular trans-Atlantic clines in frequencies and each of them reaches its highest frequency in a particular country. A shallow multifurcating constellation gene genealogy implies young age and recent turnover of polymorphism. Haplotypes characterizing populations at opposite ends of the geographic distribution in Newfoundland and the Baltic are mutationally closest together. The haplotypes are young and have risen rapidly in frequency. Observed differentiation among countries is due primarily to clinal variation. Hypotheses of historical isolation and polymorphisms balanced by local selection and gene flow are unlikely. Instead the results are explained by demic selection of mitochondria carried by highly fit females winning reproductive sweepstakes. By inference the Atlantic cod, a very high-fecundity vertebrate, is characterized by a high variance of offspring number and strong natural selection that leads to very low effective to actual population sizes.