Photorespiration and Glycolate Metabolism: A Re-examination and Correlation of Some Previous Studies 1

Some previous studies of photorespiration and glycolate oxidation were re-examined and correlated by infra-red CO2 analysis. Data about rate of photosynthesis and oxygen sensitivity indicated that complete inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1 dimethyl urea (DCMU) allowed dark...

Full description

Bibliographic Details
Main Authors: Downton, W. J. S., Tregunna, E. B.
Format: Text
Language:English
Published: 1968
Subjects:
Online Access:http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1086949
http://www.ncbi.nlm.nih.gov/pubmed/16656863
Description
Summary:Some previous studies of photorespiration and glycolate oxidation were re-examined and correlated by infra-red CO2 analysis. Data about rate of photosynthesis and oxygen sensitivity indicated that complete inhibition of photosynthesis with 3-(3,4-dichlorophenyl)-1,1 dimethyl urea (DCMU) allowed dark respiration to continue in the light. Photorespiration was also inhibited. The oxygen sensitivity of glycolate-stimulated CO2 production was found to be compatible with the proposal that glycolate is a substrate of photorespiration. Both `in vivo' and `in vitro' studies of the alga Nitella flexilis have revealed a pathway of glycolate oxidation similar to that of higher plants. DCMU inhibition of photosynthesis by Nitella gave results similar to those for the monocotyledons tested. Under very low light intensity, carbon dioxide compensation in corn was measurable but was not sensitive to high oxygen concentration. It appears that the lack of photorespiration in this plant is not the end result of efficient internal recycling of CO2 to photosynthesis.