Dietary fishmeal replacement by

Clostridium autoethanogenum protein (CAP) is a promising protein source for aquaculture; however, how CAP influences fish quality is worth extensive research. We randomly allocated 630 turbot with initial body weights of about 180 g into 6 groups, with fishmeal-based control diet or diet with CAP re...

Full description

Bibliographic Details
Published in:Animal Nutrition
Main Authors: Qi, Zezheng, Bai, Nan, Li, Qing, Pan, Shihui, Gu, Min
Format: Article in Journal/Newspaper
Language:English
Published: PubMed Central 2024
Subjects:
Online Access:https://doi.org/10.1016/j.aninu.2024.04.012
https://pubmed.ncbi.nlm.nih.gov/39056058
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11269857/
Description
Summary:Clostridium autoethanogenum protein (CAP) is a promising protein source for aquaculture; however, how CAP influences fish quality is worth extensive research. We randomly allocated 630 turbot with initial body weights of about 180 g into 6 groups, with fishmeal-based control diet or diet with CAP replacing 15% (CAP15), 30% (CAP30), 45% (CAP45), 60% (CAP60), or 75% (CAP75) of fishmeal protein. After a 70-d feeding trial, the fillet yield (P = 0.015) and content of protein (P = 0.017), collagen (P < 0.001), hydroxyproline (P < 0.001), C20:5n-3 (P = 0.007), and ∑n-3/∑n-6 polyunsaturated fatty acids ratio (P < 0.001) in turbot muscle was found to decrease linearly with increasing CAP. However, turbot fed CAP15 diet maintained these parameters (P > 0.05). By contrast, the muscle hardness increased linearly with increasing CAP (P = 0.004), accompanied by linear reduction of muscle fiber area (P = 0.003) and expression of myogenesis-related genes, including cathepsin D (ctsd P < 0.001) and muscle ring finger protein 1 (murf 1, P < 0.001). Phosphorylation of protein kinase B (Akt, P < 0.001), target of rapamycin (TOR, P = 0.001), eukaryotic initiation factor 4E-binding protein 1 (4E-BP1, P < 0.001), and ribosomal protein S6 (S6, P < 0.001) decreased linearly; however, phosphorylation of AMP-activated protein kinase (AMPK, P < 0.001), eukaryotic initiation factor 2α (eIF2α, P < 0.001), and the abundance of activating transcription factor 4 (ATF4, P < 0.001) increased with increasing CAP, suggesting that the TOR signaling pathway was inhibited, and the amino acid response (AAR) and AMPK pathways were activated. Additionally, expression of genes related to protein degradation, including myogenic factor 5 (myf 5, P < 0.001), myogenic differentiation (myod, P < 0.001), paired box 7 (pax 7, P < 0.001), and ctsd (P < 0.001), decreased linearly with increasing CAP. In conclusion, CAP could be used to replace up to 15% of fishmeal without negatively impacting turbot quality. However, higher levels of CAP decreased fillet yield, muscle protein content, and muscle fiber diameter while increasing muscle hardness, which could be attributed to the inhibition of the TOR pathway and activation of the AAR and AMPK pathways.