First-Time Isotopic Characterization of Seleno-Compounds in Biota: A Pilot Study of Selenium Isotopic Composition in Top Predator Seabirds.

This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The stud...

Full description

Bibliographic Details
Published in:Environmental Science & Technology
Main Authors: Marchán-Moreno, Claudia, Louvat, Pascale, Bueno, Maite, Berail, Sylvain, Corns, Warren T, Cherel, Yves, Bustamante, Paco, Amouroux, David, Pedrero, Zoyne
Format: Article in Journal/Newspaper
Language:English
Published: American Chemical Society 2024
Subjects:
Online Access:https://doi.org/10.1021/acs.est.4c02319
https://pubmed.ncbi.nlm.nih.gov/39018327
Description
Summary:This study pioneers the reporting of Se isotopes in marine top predators and represents the most extensive Se isotopic characterization in animals to date. A methodology based on hydride generation─multicollector inductively coupled plasma mass spectrometry─was established for such samples. The study was conducted on various internal organs of giant petrels (Macronectes spp.), encompassing bulk tissues (δ82/78Sebulk), distinct Se-specific fractions such as selenoneine (δ82/78SeSEN), and HgSe nanoparticles (δ82/78SeNPs). The δ82/78Sebulk results (2.0-5.6‰) offer preliminary insights into the fate of Se in key internal organs of seabirds, including the liver, the kidneys, the muscle, and the brain. Notably, the liver of all individuals was enriched in heavier Se isotopes compared to other examined tissues. In nanoparticle fraction, δ82/78Se varies significantly across individuals (δ82/78SeNPs from 0.6 to 5.7‰, n = 8), whereas it exhibits remarkable consistency among tissues and individuals for selenoneine (δ82/78SeSEN, 1.7 ± 0.3‰, n = 8). Significantly, there was a positive correlation between the shift from δ82/78Sebulk to δ82/78SeSEN and the proportion of Se present as selenoneine in the internal organs. This pilot study proves that Se species-specific isotopic composition is a promising tool for a better understanding of Se species fate, sources, and dynamics in animals.