Rise in water vapour driven by moisture transport facilitates water availability for the greening of global deserts.

There are substantial changes in the global drylands owing to climate change and anthropogenic activities. However, this aspect is not adequately explored in the context of recent climate change and global warming. Therefore, we analyse the role of water vapour in driving precipitation and correspon...

Full description

Bibliographic Details
Published in:Science of The Total Environment
Main Authors: Patel, V K, Kuttippurath, J, Kashyap, R
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier Science 2024
Subjects:
Online Access:https://doi.org/10.1016/j.scitotenv.2024.174111
https://pubmed.ncbi.nlm.nih.gov/38908582
Description
Summary:There are substantial changes in the global drylands owing to climate change and anthropogenic activities. However, this aspect is not adequately explored in the context of recent climate change and global warming. Therefore, we analyse the role of water vapour in driving precipitation and corresponding surface greenness in the global deserts using satellite measurements. Statistical techniques such as partial correlation and Randon Forest (RF) are employed to understand the relationship among the physical processes that drive water availability for desert greening. Our analysis shows that water vapour is relatively lower (<25 kg/m2) in the deserts than rest of the globe, but comparable to the polar and high-altitude regions. Among the deserts, Thar (25 kg/m2) and Sahara (15-20 kg/m2) show higher water vapour, in contrast to the American and Gobi deserts (<10 kg/m2). Trajectory analysis reveals that water vapour transport from the south Atlantic Ocean is very high (90 kg/m/s) to the Sahel region of Sahara. Similarly, water vapour comes from Arabian Sea and Indian Ocean to Thar, mainly during Indian Summer Monsoon (ISM). There is an increase in water vapour driven by a rise in moisture transport to the American, Arabian, Thar and Sub-Sahara deserts during the period 2003-2020. The rise in moisture transport and associated water vapour in the deserts enhance water availability through precipitation and soil moisture, influencing surface greenness, as illustrated by the partial correlation and RF analyses. Enhanced water vapour and water availability, together with anthropogenic activities such as agriculture and afforestation in the deserts drive greening, which is more pronounced in Thar and Sub-Sahara. This study, thus, reveals the role of atmospheric moisture in regulating the terrestrial water availability and surface greenness in the extreme arid regions on the earth.