Blood oxygen transport and depletion in diving emperor penguins.

Oxygen store management underlies dive performance and is dependent on the slow heart rate and peripheral vasoconstriction of the dive response to control tissue blood flow and oxygen uptake. Prior research has revealed two major patterns of muscle myoglobin saturation profiles during dives of emper...

Full description

Bibliographic Details
Published in:Journal of Experimental Biology
Main Authors: Ponganis, Paul J, Williams, Cassondra L, Kendall-Bar, Jessica M
Format: Article in Journal/Newspaper
Language:English
Published: Silverchair Information Systems 2024
Subjects:
Online Access:https://doi.org/10.1242/jeb.246832
https://pubmed.ncbi.nlm.nih.gov/38390686
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006389/
Description
Summary:Oxygen store management underlies dive performance and is dependent on the slow heart rate and peripheral vasoconstriction of the dive response to control tissue blood flow and oxygen uptake. Prior research has revealed two major patterns of muscle myoglobin saturation profiles during dives of emperor penguins. In Type A profiles, myoglobin desaturated rapidly, consistent with minimal muscle blood flow and low tissue oxygen uptake. Type B profiles, with fluctuating and slower declines in myoglobin saturation, were consistent with variable tissue blood flow patterns and tissue oxygen uptake during dives. We examined arterial and venous blood oxygen profiles to evaluate blood oxygen extraction and found two primary patterns of venous hemoglobin desaturation that complemented corresponding myoglobin saturation profiles. Type A venous profiles had a hemoglobin saturation that (a) increased/plateaued for most of a dive's duration, (b) only declined during the latter stages of ascent, and (c) often became arterialized [arterio-venous (a-v) shunting]. In Type B venous profiles, variable but progressive hemoglobin desaturation profiles were interrupted by inflections in the profile that were consistent with fluctuating tissue blood flow and oxygen uptake. End-of-dive saturation of arterial and Type A venous hemoglobin saturation profiles were not significantly different, but did differ from those of Type B venous profiles. These findings provide further support that the dive response of emperor penguins is a spectrum of cardiac and vascular components (including a-v shunting) that are dependent on the nature and demands of a given dive and even of a given segment of a dive.