Future impact of anthropogenic sulfate aerosol on North Atlantic climate

We examine the simulated future change of the North Atlantic winter climate influenced by anthropogenic greenhouses gases and sulfate aerosol. Two simulations performed with the climate model ECHAM4/OPYC3 are investigated: a simulation forced by greenhouse gases and a simulation forced by greenhouse...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Fischer-Bruns, I., Banse, D., Feichter, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2009
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-0011-F80D-E
http://hdl.handle.net/21.11116/0000-000B-4E85-8
Description
Summary:We examine the simulated future change of the North Atlantic winter climate influenced by anthropogenic greenhouses gases and sulfate aerosol. Two simulations performed with the climate model ECHAM4/OPYC3 are investigated: a simulation forced by greenhouse gases and a simulation forced by greenhouse gases and sulfate aerosol. Only the direct aerosol effect on the clear-sky radiative fluxes is considered. The sulfate aerosol has a significant impact on temperature, radiative quantities, precipitation and atmospheric dynamics. Generally, we find a similar, but weaker future climate response if sulfate aerosol is considered additionally. Due to the induced negative top-of-the-atmosphere radiative forcing, the future warming is attenuated. We find no significant future trends in North Atlantic Oscillation (NAO) index in both simulations. However, the aerosol seems to have a balancing effect on the occurence of extreme NAO events. The simulated correlation patterns of the NAO index with temperature and precipitation, respectively, agree well with observations up to the present. The extent of the regions influenced by the NAO tends to be reduced under strong greenhouse gas forcing. If sulfate is included and the warming is smaller, this tendency is reversed. Also, the future decrease in baroclinicity is smaller due to the aerosols' cooling effect and the poleward shift in track density is partly offset. Our findings imply that in simulations where aerosol cooling is neglected, the magnitude of the future warming over the North Atlantic region is overestimated, and correlation patterns differ from those based on the future simulation including aerosols.