The Antarctic circumpolar wave in a coupled ocean–atmosphere GCM

A phenomenon called the Antarctic Circumpolar Wave (ACW), suggested earlier from fragmentary observational evidence, has been simulated realistically in an extended integration of a Max Planck Institute coupled general circulation model. The ACW both in the observations and in the model constitutes...

Full description

Bibliographic Details
Main Authors: Christoph, M., Barnett, T., Roeckner, E.
Format: Article in Journal/Newspaper
Language:English
Published: 1998
Subjects:
Online Access:http://hdl.handle.net/21.11116/0000-0009-ECF0-E
http://hdl.handle.net/21.11116/0000-0009-ECF2-C
http://hdl.handle.net/21.11116/0000-0009-ED1E-C
Description
Summary:A phenomenon called the Antarctic Circumpolar Wave (ACW), suggested earlier from fragmentary observational evidence, has been simulated realistically in an extended integration of a Max Planck Institute coupled general circulation model. The ACW both in the observations and in the model constitutes a mode of the coupled ocean–atmosphere–sea-ice system that inhabits the high latitudes of the Southern Hemisphere. It is characterized by anomalies of such climate variables as sea surface temperature, sea level pressure, meridional wind, and sea ice that exhibit intricate and evolving spatial phase relations to each other. The simulated ACW signal in the ocean propagates eastward over most of the high-latitude Southern Ocean, mainly advected along in the Antarctic Circumpolar Current. On average, it completes a circuit entirely around the Southern Ocean but is strongly dissipated in the South Atlantic and in the southern Indian Ocean, just marginally maintaining statistical significance in these areas until it reaches the South Pacific where it is reenergized. In extreme cases, the complete circumpolar propagation is more clear, requiring about 12–16 yr to complete the circuit. This, coupled with the dominant zonal wavenumber 3 pattern of the ACW, results in the local reappearance of energy peaks about every 4–5 yr. The oceanic component of the mode is forced by the atmosphere via fluxes of heat. The overlying atmosphere establishes patterns of sea level pressure that mainly consist of a standing wave and are associated with the Pacific–South American (PSA) oscillation described in earlier works. The PSA, like its counterpart in the North Pacific, appears to be a natural mode of the high southern latitudes. There is some ENSO-related signal in the ACW forced by anomalous latent heat release associated with precipitation anomalies in the central and western tropical Pacific. However, ENSO-related forcing explains at most 30% of the ACW variance and, generally, much less. It is hypothesized that the ACW as an entity ...