The role of sea-ice albedo in the climate of slowly rotating aquaplanets

We investigate the influence of the rotation period (Prot) on the mean climate of an aquaplanet, with a focus on the role of sea-ice albedo. We perform aquaplanet simulations with the atmospheric general circulation model ECHAM6 for various rotation periods from one Earth-day to 365 Earth-days in wh...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Authors: Salameh, J., Popp, M., Marotzke, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-002C-A7C4-F
http://hdl.handle.net/11858/00-001M-0000-002D-0746-2
http://hdl.handle.net/11858/00-001M-0000-002D-0750-A
Description
Summary:We investigate the influence of the rotation period (Prot) on the mean climate of an aquaplanet, with a focus on the role of sea-ice albedo. We perform aquaplanet simulations with the atmospheric general circulation model ECHAM6 for various rotation periods from one Earth-day to 365 Earth-days in which case the planet is synchronously rotating. The global-mean surface temperature decreases with increasing Prot and sea ice expands equatorwards. The cooling of the mean climate with increasing Prot is caused partly by the high surface albedo of sea ice on the dayside and partly by the high albedo of the deep convective clouds over the substellar region. The cooling caused by these deep convective clouds is weak for non-synchronous rotations compared to synchronous rotation. Sensitivity simulations with the sea-ice model switched off show that the global-mean surface temperature is up to 27 K higher than in our main simulations with sea ice and thus highlight the large influence of sea ice on the climate. We present the first estimates of the influence of the rotation period on the transition of an Earth-like climate to global glaciation. Our results suggest that global glaciation of planets with synchronous rotation occurs at substantially lower incoming solar irradiation than for planets with slow but non-synchronous rotation.