Climate extremes in multi-model simulations of stratospheric aerosol and marine cloud brightening climate engineering

Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two solar radiation management (SRM) schemes (stratospheric sulfate injection (G3), SULF and marine cloud brightening by sea salt emission SALT) have been analysed in terms of changes in the...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Aswathy, V., Boucher, O., Quaas, M., Niemeier, U., Muri, H., Mülmenstädt, J., Quaas, J.
Format: Article in Journal/Newspaper
Language:English
Published: 2015
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-0028-57CC-F
http://hdl.handle.net/11858/00-001M-0000-0028-57D0-3
http://hdl.handle.net/11858/00-001M-0000-0028-57D1-1
Description
Summary:Simulations from a multi-model ensemble for the RCP4.5 climate change scenario for the 21st century, and for two solar radiation management (SRM) schemes (stratospheric sulfate injection (G3), SULF and marine cloud brightening by sea salt emission SALT) have been analysed in terms of changes in the mean and extremes of surface air temperature and precipitation. The climate engineering and termination periods are investigated. During the climate engineering period, both schemes, as intended, offset temperature increases by about 60 % globally, but are more effective in the low latitudes and exhibit some residual warming in the Arctic (especially in the case of SALT which is only applied in the low latitudes). In both climate engineering scenarios, extreme temperature changes are similar to the mean temperature changes over much of the globe. The exceptions are the mid- and high latitudes in the Northern Hemisphere, where high temperatures (90th percentile of the distribution) of the climate engineering period compared to RCP4.5 control period rise less than the mean, and cold temperatures (10th percentile), much more than the mean. This aspect of the SRM schemes is also reflected in simulated reduction in the frost day frequency of occurrence for both schemes. However, summer day frequency of occurrence increases less in the SALT experiment than the SULF experiment, especially over the tropics. Precipitation extremes in the two SRM scenarios act differently