Cadmium isotope variations in the Southern Ocean

Cadmium concentrations and isotope compositions were determined for 47 seawater samples from the high nutrient low chlorophyll (HNLC) zone of the Atlantic sector of the Southern Ocean. The samples include 13 surface waters from a transect of the Weddell Gyre and 3 depth profiles from the Weddell Sea...

Full description

Bibliographic Details
Main Authors: Xue, Z., Rehkämper, M., Horner, T., Abouchami, W., Middag, R., van de Flierd, T., de Baar, H.
Format: Article in Journal/Newspaper
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/11858/00-001M-0000-0015-89EB-B
Description
Summary:Cadmium concentrations and isotope compositions were determined for 47 seawater samples from the high nutrient low chlorophyll (HNLC) zone of the Atlantic sector of the Southern Ocean. The samples include 13 surface waters from a transect of the Weddell Gyre and 3 depth profiles from the Weddell Sea and Drake Passage. The Southern Ocean mixed layer samples from this study and Abouchami et al. (2011) define a clear but broad 'HNLC trend' in a plot of epsilon Cd-114/110 versus [Cd], which is primarily a consequence of isotopic fractionation associated with biological uptake (epsilon Cd-114/110 is the deviation of the Cd-114/Cd-110 ratio of a sample from NIST SRM 3108 Cd in parts per 10,000). The trend is especially apparent in comparison to the large range of values shown by a global set of seawater Cd data for shallow depths. The Southern Ocean samples are also distinguished by their relatively high Cd concentrations (typically 0.2 to 0.6 nmol/kg) and moderately fractionated epsilon Cd-114/110 (generally between +4 and +8) that reflect the limited biological productivity of this region. Detailed assessment reveals fine structure within the 'HNLC trend', which may record differences in the biological fractionation factor, different scenarios of closed and open system isotope fractionation, and/or distinct source water compositions. Southern Ocean seawater from depths >= 1000 m has an average epsilon Cd-114/110 of +2.5 +/- 0.2 (2se, n = 16), and together with previous results this establishes a relatively constant epsilon Cd-114/110 value of +3.0 +/- 0.3 (2se, n = 27) for global deep waters. Significant isotopic variability was observed at intermediate depths in the Southern Ocean. Seawater from 200 m to 400 m in Weddell Sea has high Cd concentrations and epsilon Cd-114/110 as low as +1, presumably due to remineralization of Cd from biomass that records incomplete nutrient utilization. Antarctic Intermediate Water, which was sampled at 150 to 750 m depth in the, Drake Passage, features a distinct Cd isotope ...