대기 오염이 연근해 지역의 탄소와 영양염의 생지화적 순환에 미치는 영향에 대한 연구

Doctor This dissertation work investigated the impact of increasing atmospheric CO2 and pollutant nitrogen species on the ocean environment with a particular focus on coastal and marginal seas located downstream of highly industrialized and populated areas. Atmospheric CO2 and pollutant nitrogen hav...

Full description

Bibliographic Details
Main Author: 김태욱
Other Authors: 일반대학원 환경공학부, 포항공과대학교
Format: Thesis
Language:English
Published: 포항공과대학교 2012
Subjects:
Online Access:http://postech.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001384991
https://oasis.postech.ac.kr/handle/2014.oak/1608
Description
Summary:Doctor This dissertation work investigated the impact of increasing atmospheric CO2 and pollutant nitrogen species on the ocean environment with a particular focus on coastal and marginal seas located downstream of highly industrialized and populated areas. Atmospheric CO2 and pollutant nitrogen have caused ocean acidification, shifts in seawater nutrient limitation, and probably a change in phytoplankton productivity, thereby altering the aquatic ecosystems. The adverse effects of these environmental problems are likely to be more severe in the coastal and marginal seas because the sources of the pollution are largely concentrated on the coast. Prominent examples are coastal waters of East Asia and eastern North America. However, we still lack knowledge about how these pollutants have altered the waters in these two areas. Therefore, more investigation of the response of these seas to increased atmospheric CO2 and deposition of pollutant nitrogen is needed. Knowing the current consequences of the effects of these two pollutants will help to provide useful insights in dealing with these environmental problems and in preparing for expected threats in the future. This dissertation is composed of the following three parts: the study of i) ocean acidification in the East Sea, ii) increasing nitrate concentration in the East Asian marginal seas, and iii) the fertilization effect of wet nitrogen deposition on the US east coast. The first study investigated how the East Sea was affected by ocean acidification over time using a multiparameter linear regression (MLR) model together with the estimated uptake of anthropogenic CO2. The MLR model of aragonite saturation state (ΩARG, a proxy for ocean acidification) as a function of temperature, pressure and O2 concentration in the upper 1,000 m of the East Sea was derived with an uncertainty of 0.020 (1). The ΩARG data used to derive the ΩARG prediction model were collected during a field survey in 1999 and were corrected for anthropogenic CO2. Evaluation of the model ...