Molecular mechanisms mediating stiffening in the mechanically adaptable connective tissues of sea cucumbers

Mutable collagenous tissues (MCTs) from echinoderms (e.g., sea stars, sea urchins) possess the remarkable ability to change their mechanical properties rapidly and reversibly thanks to the release of effector molecules regulating the number of cross-links between collagen fibrils. Among these effect...

Full description

Bibliographic Details
Published in:Matrix Biology
Main Authors: Bonneel, Marie, Hennebert, Elise, Aranko, A. Sesilja, Hwang, Dong Soo, Lefevre, Mathilde, Pommier, Valentine, Wattiez, Ruddy, Delroisse, Jérôme, Flammang, Patrick
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier BV 2022
Subjects:
Online Access:https://oasis.postech.ac.kr/handle/2014.oak/110854
https://doi.org/10.1016/j.matbio.2022.02.006
Description
Summary:Mutable collagenous tissues (MCTs) from echinoderms (e.g., sea stars, sea urchins) possess the remarkable ability to change their mechanical properties rapidly and reversibly thanks to the release of effector molecules regulating the number of cross-links between collagen fibrils. Among these effector molecules, tensilin has been identified as a stiffening factor in sea cucumber MCTs. Since its discovery and description twenty years ago, tensilin orthologs have been identified in a few sea cucumber species but no novel information about its molecular mode of action has been reported. In this study, using a combination of in silico analyses, we identi-fied the tensilin present in the dermis of Holothuria forskali, Hf-(D)Tensilin. Anti-peptide antibodies showed that this protein is localised in the secretory granules of type 2 juxtaligamental-like cells, a MCT specific cell type. We then used the bacterium E. coli to produce recombinantly Hf-(D)Tensilin and confirmed its stiffening effect on pieces of the dermis and its aggregation effect on collagen fibrils extracted from the sea cucumber dermis. To investigate how tensilin can cross-bridge collagen fibrils, truncated recombinant tensilins were also produced and used in combination with various compounds. Results suggest that two types of interac-tions contribute to the aggregation effect of tensilin on the fibrils: (1) the N-terminal NTR TIMP like domain of the protein interacts strongly with sulfated GAGs attached to the surface of the collagen fibrils, and (2) the C-terminal part of the protein is involved in its dimerisation/oligomerisation through ionic but possibly also cat-ion-p and hydrophobic interactions. 1 1 N scie scopus