Architecture and methods for UAV-based heterogeneous sensor network applications

Wireless sensor netwoks (WSN) employ miniaturized devices which integrate sensing, processing, and communication capabilities. In this paper an innovative mobile platform for heterogeneous sensor networks is presented, combined with adaptive methods to optimize the communication architecture for nov...

Full description

Bibliographic Details
Published in:SPIE Proceedings, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2012
Main Authors: Pedro Antonio, CAPUTO, DAVIDE, GANDELLI, ALESSANDRO, GRIMACCIA, FRANCESCO, MUSSETTA, MARCO
Other Authors: Bostater, C.R., Mertikas, S.P., Neyt X., Nichol, C., Cowley, D.C., Bruyant, J.P., Pedro, Antonio, Caputo, Davide, Gandelli, Alessandro, Grimaccia, Francesco, Mussetta, Marco
Format: Book Part
Language:English
Published: SPIE, The International Society for Optical Engineering 2012
Subjects:
Online Access:http://hdl.handle.net/11311/691750
https://doi.org/10.1117/12.970569
Description
Summary:Wireless sensor netwoks (WSN) employ miniaturized devices which integrate sensing, processing, and communication capabilities. In this paper an innovative mobile platform for heterogeneous sensor networks is presented, combined with adaptive methods to optimize the communication architecture for novel potential applications even in coastal and marine environment monitoring. In fact, in the near future, WSN data collection could be performed by UAV platforms which can be a sink for ground sensors layer, acting essentially as a mobile gateway. In order to maximize the system performances and the network lifespan, the authors propose a recently developed hybrid technique based on evolutionary algorithms. This procedure is here applied to optimize the communication energy consumption in WSN by selecting the optimal multi-hop routing schemes, with a suitable hybridization of different routing criteria. The proposed approach can be potentially extended and applied to ongoing research projects focused on UAV-based remote sensing of the ocean, sea ice, coastal waters, and large water regions.