Potential Climate Change Effects on the Habitat of Antarctic Krill in the Weddell Quadrant of the Southern Ocean

Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0 degrees and 90 degrees W. Parts of this qu...

Full description

Bibliographic Details
Published in:PLoS ONE
Main Authors: Browman, HI, Hill, SL, Phillips, T, Atkinson, A
Format: Article in Journal/Newspaper
Language:English
Published: 2013
Subjects:
Online Access:http://plymsea.ac.uk/id/eprint/5527/
http://plymsea.ac.uk/id/eprint/5527/1/Hill%20et%20al%20PLoS%20One%202013.pdf
https://doi.org/10.1371/journal.pone.0072246
Description
Summary:Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0 degrees and 90 degrees W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2 degrees C per decade, and projections suggest that further widespread warming of 0.27 degrees to 1.08 degrees C will occur by the late 21st century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.