Foliar stoichiometry under different mycorrhizal types in relation to temperature and precipitation in grassland

Mycorrhizas play key roles in important ecosystem processes and functions. Carbon (C), nitrogen (N) and phosphorus (P) concentrations and their ratios are very important foliar traits and their cycling constrains most ecosystem processes. Thus, this study addresses the influence of mycorrhizal strat...

Full description

Bibliographic Details
Published in:Journal of Plant Ecology
Main Authors: Shi, Zhaoyong, Hou, Xiaogai, Chen, Yinglong, Wang, Fayuan, Miao, Yanfang
Other Authors: Shi, ZY (reprint author), Henan Univ Sci & Technol, Coll Agr, Luoyang 471003, Henan, Peoples R China., Henan Univ Sci & Technol, Coll Agr, Luoyang 471003, Henan, Peoples R China., Peking Univ, Minist Educ, Lab Earth Surface Proc, Beijing 100871, Peoples R China., Hebei Univ, Coll Life Sci, Baoding 071002, Peoples R China., Univ Western Australia, Fac Nat & Agr Sci, Sch Earth & Environm, Perth, WA 6009, Australia.
Format: Journal/Newspaper
Language:English
Published: journal of plant ecology 2013
Subjects:
Online Access:https://hdl.handle.net/20.500.11897/391263
https://doi.org/10.1093/jpe/rts042
Description
Summary:Mycorrhizas play key roles in important ecosystem processes and functions. Carbon (C), nitrogen (N) and phosphorus (P) concentrations and their ratios are very important foliar traits and their cycling constrains most ecosystem processes. Thus, this study addresses the influence of mycorrhizal strategies on these foliar nutrients and their response to climate change. A new database was established including mycorrhizal types and leaf C-mass, N-mass, P-mass, C: N and N: P of each plant species based on He et al. [(2008) Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland biomes. Oecologia 155:30110]. The predominant type of mycorrhizal association of each plant species was classified according to the published literature and our own observations. We analyzed leaf C-mass, N-mass, P-mass, C: N and N: P among 112 plant species in 316 samples of ascertained mycorrhizal type in the major grassland biomes of China. The results show highly significant variation among different mycorrhizal strategy types for foliar C-mass, N-mass and N: P. The highest foliar C-mass was observed in ectotrophic mycorrhiza (ECM) type (469.8mg g(1)) followed by that in arbuscular mycorrhiza (AM) type (443.884mg g(1)) and nonmycorrhizal (NM) type (434.0mg g(1)). The foliar N concentration was significantly higher in NM type (31.0mg g(1)). However, the AM type had the greater C:N value (19) than the other types although less variation in C-mass and N:P among abuscular types on AM strategy was observed. Foliar traits showed significant variation in response to precipitation (mean growing season and annual precipitation (GSP and MAP)) and temperature (mean growing season and annual temperatures (GST and MAT)) depending on different mycorrhizal strategies and arbuscular types. When the responses of all folia parameters to precipitation and temperature were compared, the influence of GSP on leaf traits was greater than the influence of GST. Plant Sciences Ecology SCI(E) 1 ARTICLE 4 270-276 6