Submicron aerosols at thirteen diversified sites in China: size distribution, new particle formation and corresponding contribution to cloud condensation nuclei production

Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effects on regional air quality, haze and human health. In this study, we conducted 15 different field measureme...

Full description

Bibliographic Details
Published in:Atmospheric Chemistry and Physics
Main Authors: Peng, J. F., Hu, M., Wang, Z. B., Huang, X. F., Kumar, P., Wu, Z. J., Guo, S., Yue, D. L., Shang, D. J., Zheng, Z., He, L. Y.
Other Authors: Hu, M (reprint author), Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China., Peking Univ, Coll Environm Sci & Engn, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100871, Peoples R China., Peking Univ, Shenzhen Grad Sch, Sch Environm & Energy, Key Lab Urban Habitat Environm Sci & Technol, Shenzhen 518055, Peoples R China., Univ Surrey, Fac Engn & Phys Sci, Dept Civil & Environm Engn, Guildford GU2 7XH, Surrey, England., Univ Surrey, FEPS, Environm Flow EnFlo Res Ctr, Guildford GU2 7XH, Surrey, England.
Format: Journal/Newspaper
Language:English
Published: atmospheric chemistry and physics 2014
Subjects:
Online Access:https://hdl.handle.net/20.500.11897/324370
https://doi.org/10.5194/acp-14-10249-2014
Description
Summary:Understanding the particle number size distributions in diversified atmospheric environments is important in order to design mitigation strategies related to submicron particles and their effects on regional air quality, haze and human health. In this study, we conducted 15 different field measurement campaigns between 2007 and 2011 at 13 individual sites in China, including five urban sites, four regional sites, three coastal/background sites and one ship cruise measurement along eastern coastline of China. Size resolved particles were measured in the 15-600 nm size range. The median particle number concentrations (PNCs) were found to vary in the range of 1.1-2.2 x 10(4) cm(-3) at urban sites, 0.8-1.5 x 10(4) cm(-3) at regional sites, 0.4-0.6 x 10(4) cm(-3) at coastal/background sites, and 0.5 x 10(4) cm(-3) during cruise measurement. Peak diameters at each of these sites varied greatly from 24 to 115 nm. Particles in the 15-25 nm (nucleation mode), 25-100 nm (Aitken mode) and 100-600 nm (accumulation mode) range showed different characteristics at each sites, indicating the features of primary emissions and secondary formation in these diversified atmospheric environments. Diurnal variations show a build-up of accumulation mode particles belt at regional sites, suggesting the contribution of regional secondary aerosol pollution. Frequencies of new particle formation (NPF) events were much higher at urban and regional sites than at coastal sites and during cruise measurement. The average growth rates (GRs) of nucleation mode particles were 8.0-10.9 nm h(-1) at urban sites, 7.4-13.6 nm h(-1) at regional sites and 2.8-7.5 nm h(-1) at coastal sites and during cruise measurement. The high gaseous precursors and strong oxidation at urban and regional sites not only favored the formation of particles, but also accelerated the growth rate of the nucleation mode particles. No significant difference in condensation sink (CS) during NPF days were observed among different site types, suggesting that the NPF events in background areas were more influenced by the pollutant transport. In addition, average contributions of NPF events to potential cloud condensation nuclei (CCN) at 0.2% super-saturation in the afternoon of all sampling days were calculated as 11% and 6% at urban sites and regional sites, respectively. On the other hand, NPF events at coastal sites and during cruise measurement had little impact on potential production of CCN. This study provides a large data set of particle size distribution in diversified atmosphere of China, improving our general understanding of emission, secondary formation, new particle formation and corresponding CCN activity of submicron aerosols in Chinese environments. Meteorology & Atmospheric Sciences SCI(E) 3 ARTICLE minhu@pku.edu.cn 18 10249-10265 14