Coastal and landfast sea ice thickness in western Ross Sea, Antarctica, from airborne electromagnetic induction in November 2017: Terra Nova Bay

The data are approximately 800 km of airborne electromagnetic survey of coastal sea ice and sub-ice platelet layer (SIPL) thickness distributions in the western Ross Sea, Antarctica, from McMurdo Sound to Cape Adare. Data were collected between 8 and 13 November 2017, within 30 days of the maximum f...

Full description

Bibliographic Details
Main Authors: Langhorne, Patricia J, Haas, Christian, Rack, Wolfgang, Leonard, Greg H, Brett, Gemma Marie, Price, Daniel
Format: Dataset
Language:English
Published: PANGAEA 2022
Subjects:
EMB
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.950400
https://doi.org/10.1594/PANGAEA.950400
Description
Summary:The data are approximately 800 km of airborne electromagnetic survey of coastal sea ice and sub-ice platelet layer (SIPL) thickness distributions in the western Ross Sea, Antarctica, from McMurdo Sound to Cape Adare. Data were collected between 8 and 13 November 2017, within 30 days of the maximum fast ice extent in this region. Approximately 700 km of the transect was over landfast sea ice that had been mechanically attached to the coast for at least 15 days. Most of the ice was first-year sea ice. Unsmoothed in-phase and quadrature components are presented at all locations. Data have been smoothed with an 100 point median filter, and in-phase and quadrature smoothed data are also presented at all locations. Beneath level ice it is possible to identify the thickness of an SIPL and a filter is described (Langhorne et al) to identify level ice. Level ice in-phase, quadrature and SIPL thickness, derived from these, are presented at locations of level ice. For rough ice, the in-phase component is considered the best measure of sea ice thickness. For level ice where there is the possibility of an SIPL, then the quadrature component is considered the best measure of ice thickness, along with SIPL thickness. All data are in meters.