Down-core geochemical data from Disko 2 lake sediment core (West Greenland) collected in April 2013

Lake sediment samples were taken in April 2013 from the ice by drilling through lake ice and recovering an undisturbed core using a HON-Kajak sediment corer. Samples were analysed for pigments (University of Nottingham), carbon isotopes and C/N ratios (BGS, Keyworth), lipid biomarkers (Newcastle Uni...

Full description

Bibliographic Details
Main Authors: Stevenson, Mark A, McGowan, Suzanne, Pearson, Emma J, Swann, George E A, Leng, Melanie J, Jones, Vivienne J, Bailey, Joseph J, Huang, Xianyu, Whiteford, Erika
Format: Dataset
Language:English
Published: PANGAEA 2021
Subjects:
Age
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.927276
https://doi.org/10.1594/PANGAEA.927276
Description
Summary:Lake sediment samples were taken in April 2013 from the ice by drilling through lake ice and recovering an undisturbed core using a HON-Kajak sediment corer. Samples were analysed for pigments (University of Nottingham), carbon isotopes and C/N ratios (BGS, Keyworth), lipid biomarkers (Newcastle University) and compound-specific carbon isotopes (CUG, Wuhan). The purpose of the analyses was to develop an environmental reconstruction of carbon cycling for an upland lake (named Disko 2) to encompass the Little Ice Age to recent warming climate periods. Analyses were completed as part of Mark A. Stevenson's PhD research while based at the University of Nottingham, UK (Stevenson, 2017, http://eprints.nottingham.ac.uk/46579). ²¹⁰Pb, ²²⁶Ra, ¹³⁷Cs and ²⁴¹Am concentrations were measured by direct gamma assay in the Environmental Radiometric Facility at University College London (Dr Handong Yang), using an ORTEC HPGe GWL series well-type coaxial low background intrinsic germanium detector. Radiometric dating techniques follow Appleby et al, 1986 (doi:10.1007/BF00026640), Appleby et al, 1992 (doi:10.1016/0168-583X(92)95328-O) and Appleby, 2001 (doi:10.1007/0-306-47669-X_9) with core extrapolation and linear interpolation used to derive an age depth model to the base of the core. The pigment β-carotene was analysed on an Agilent 1200 series high-performance liquid chromatography (HPLC) using separation conditions outlined in McGowan et al., 2012 (doi:10.1111/j.1365-2427.2011.02689.x). Bulk δ¹³C and C~org~/N ratios were analysed on acidified samples using a Costech ECS4010 elemental analyser (EA) coupled to a VG Triple Trap and a VG Optima dual-inlet mass spectrometer. Key lipid biomarkers (n-alkanes, n-alkanoic acids (as fatty acid methyl esters (FAMEs), n-alkanols and sterols) were analysed using an Agilent 7890A GC coupled to a 5975C MS according to Pearson et al., 2007 (doi:10.1016/j.orggeochem.2007.02.007) and are expressed as ratios, relative to the total of each compound class. Specific ratios were also calculated for ...