Seawater carbonate chemistry and metabolic rates, bloodbased metrics in newborn blacktip reef sharks

Anthropogenic ocean acidification (OA) is a threat to coral reef fishes, but few studies have investigated responses of high-trophic-level predators, including sharks. We tested the effects of 72-hr exposure to OA-relevant elevated partial pressures of carbon dioxide (pCO2) on oxygen uptake rates, a...

Full description

Bibliographic Details
Main Authors: Rummer, Jodie L, Bouyoucos, Ian A, Mourier, Johann, Nakamura, Nao, Planes, Serge
Format: Dataset
Language:English
Published: PANGAEA 2020
Subjects:
pH
Online Access:https://doi.pangaea.de/10.1594/PANGAEA.926819
https://doi.org/10.1594/PANGAEA.926819
Description
Summary:Anthropogenic ocean acidification (OA) is a threat to coral reef fishes, but few studies have investigated responses of high-trophic-level predators, including sharks. We tested the effects of 72-hr exposure to OA-relevant elevated partial pressures of carbon dioxide (pCO2) on oxygen uptake rates, acid–base status, and haematology of newborn tropical blacktip reef sharks (Carcharhinus melanopterus). Acute exposure to end-of-century pCO2 levels resulted in elevated haematocrit (i.e. stress or compensation of oxygen uptake rates) and blood lactate concentrations (i.e. prolonged recovery) in the newborns. Conversely, whole blood and mean corpuscular haemoglobin concentrations, blood pH, estimates of standard and maximum metabolic rates, and aerobic scope remained unaffected. Taken together, newborn blacktip reef sharks appear physiologically robust to end-of-century pCO2 levels, but less so than other, previously investigated, tropical carpet sharks. Our results suggest peak fluctuating pCO2 levels in coral reef lagoons could still physiologically affect newborn reef sharks, but studies assessing the effects of long-term exposure and in combination with other anthropogenic stressors are needed.